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Modern microscopic imaging devices are able to extract more
information regarding the sub cellular organization of different
molecules and proteins than can be obtained by visual inspec-
tion. Pre-determined numerical features (descriptors) often used
to quantify cells extracted from these images have long been
shown useful for discriminating cell populations (e.g. normal
vs. diseased). Direct visual or biological interpretation of re-
sults obtained, however, is often not a trivial task. We describe
an approach for detecting and visualizing phenotypic differences
between classes of cells based on the theory of optimal mass
transport. The method is completely automated, does not require
the use of predefined numerical features, and at the same time al-
lows for easily interpretable visualizations of the most significant
differences. Using this method we demonstrate that the distribu-
tion pattern of peripheral chromatin in the nuclei of cells extracted
from liver and thyroid specimens is associated with malignancy.
We also show the method can correctly recover biologically inter-
pretable and statistically significant differences in translocation
imaging assays in a completely automated fashion.

Hight content screening | Cellular morphometry | Cytometry

Significance
Much of what is currently known about how cells work has been
derived through visual interpretation of microscopy images. Com-
putational methods for image analysis have emerged as quantitative
alternatives to visual interpretation. We describe an analysis pipeline
for cell image databases that combines statistical pattern recognition
with the mathematics of optimal mass transport. The approach is
fully automated and does not require the use of ad hoc numerical fea-
tures. It enables the identification of discriminant phenotypic varia-
tions, or biomarkers, between sets of cells (e.g. normal vs. diseased)
while at the same time allowing for the visualization of meaningful
differences. The approach can be used for fully automated high con-
tent screening with a variety of microscopic image modalities.

Introduction
Quantitative analysis of cell images is extensively used in several
health sciences applications [1]. Scientists wishing to quantify the
effects of certain drugs, genes, and other perturbations (e.g. benign
vs. malignant cancer cells) routinely make use of numerical software
that are capable of evaluating statistical differences between two pop-
ulations of cells captured under the microscope [2]. Beyond simple
automation facilitating the analysis of thousands of cells, the purpose
of such software is to attempt to extract information that the human
visual system is unable to cope with. A well-known drawback of
existing methods is that the visual interpretation of any differences
found is usually ‘hidden’ from the user. The popular numerical fea-
tures used to quantify and compare cells such as form factor, Gabor
and Haralick texture features, color histograms, etc. [7–9], usually
do not have a direct biological interpretation. The situation is even
more complicated when multiple features are needed simultaneously
to characterize differences between cells, given that the physical in-

terpretation of a combination of features with different units is a non-
trivial task. Consequently, statistical tests are limited to determining
whether or not two or more cell populations are different. Visual
interpretation of any obtained result is usually non-intuitive and dif-
ficult.

Here we describe a method, which we call the transport based
morphometry (TBM), that takes as input a database of pre-segmented
cell images and outputs a representation for the same data which can
be used for simultaneous visualization and quantitative evaluation in
commonplace biological domains. An a priori set of numerical fea-
tures is not needed as all calculations for comparing cells are done us-
ing the entire information present in each cell image. Our approach is
based on combining a framework for image analysis based on the the-
ory of optimal mass transport [3,11] together with a modified version
of the linear discriminant analysis technique [10], as well as other
modifications and extensions as explained below. Mass, in this case,
refers to the intensity associated with each particular pixel, which is
often linear w.r.t. number of molecules (e.g. proteins) present in that
location. The idea is demonstrated in Fig. 1. The segmented im-
ages are first normalized so as to eliminate the effect of translation
and rotation, and are spatially morphed to a precomputed ‘reference’
image. A weighted Euclidean distance computed between two trans-
formations approximates the optimal transport of mass (correspond-
ing to image intensity) between each image, and thus defines a linear
embedding for the data. The main phenotype variations in a given
dataset can then be given by the standard principal component analy-
sis (PCA) technique. PCA, however, can only be used for visualizing
variations as a whole. Statistically significant differences between
different classes of cells are computed through a modified version
of the penalized Linear Discriminant Analysis (pLDA) [10] applied
to the linear optimal transport (LOT) coordinates computed by the
method described in [3]. Given that the utilized embedding technique
is invertible the result of any statistical analysis (e.g. PCA,pLDA) can
be directly visualized in image space.

With respect to the work in [3, 10] we describe the following
extensions. We utilize the LOT framework, in combination with a
modified version of the pLDA method, to derive a linear discriminant
subspace for different cell populations by selecting only the dimen-
sions which contain statistically meaningful distances, as described
in the methods (and supplement) section. We also describe a method
that allows one to obtain a visual and quantitative interpretation of
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the phenotype variations in a cell population with respect to a chosen
independent variable (e.g. time, drug concentration, etc.). Here we
also focus on describing how these advances can play a role in elic-
iting previously unavailable information regarding cell morphology
in several problems relevant to cell biology and pathology. Finally,
we combine all these advances into a freely available concise soft-
ware package that can be used by scientists to perform high content
screening tasks [17].

In the results section, we describe the application of TBM to
discover information in several high content screening applications.
The first application is concerned with discovering the principal dif-
ferences in nuclear chromatin arrangement between normal, benign,
and malignant cells extracted from the liver and thyroid of pediatric
patients [4]. Nuclear structure has long been a highly used biomarker
in image-based pathology. For many malignancies, however, nuclear
structure is not utilized given the absence of knowledge related to
discriminating structural information. We utilize TBM to uncover
statistically meaningful and at the same time easy to interpret differ-
ences in nuclear structure in these malignancies.

The second application is concerned with automated screening
for cell phenotype changes in imaging-based assays. Such assays
are routinely used for a wide variety of applications including drug
discovery, functional genomics, chemical probe discovery, etc. In
this paper, we detail the application of TBM to quantifying translo-
cation of the Forkhead fusion protein as a function of Wortmannin
dosage in stably transfected human osteosarcoma cells (U2OS) [5].
We show that TBM is able to correctly identify the underlying trend
of cytoplasm-to-nucleus translocation in a manner which is both sta-
tistically significant and intuitive to understand. We note that in con-
trast to currently available methods [5], the trend does not have to be
"assumed" a priori. Rather it is automatically discovered without any
human intervention.

Results
Visualizing variations of chromatin patterns in normal and cancer-
ous cells. Exploratory visual analysis is an important part of coming
to a comprehensive understanding of the phenotype variability in a
given set of cells derived from a particular experiment. It can be used
to obtain an understanding of the main trends regarding shape, struc-
ture, and texture variation in a given experiment. We applied TBM
to visualize the most significant nuclear structure variations present
in the thyroid and liver specimens, as well as in the Forkhead fusion
protein in the cytoplasm-to-nucleus translocation imaging assay (see
Methods). Using the principal component analysis technique [6], in
conjunction with the transport approach described in [3] we are able
to conclude that the main modes of variation (in order of decreas-
ing corresponding variance) are: nuclear size, elongation, shifts in
chromatin concentration, as well as shifts in chromatin concentra-
tion accompanied by nuclear envelope protrusions. The first nineteen
components of the TBM-enabled PCA analysis of the liver data are
shown in Figure 2. These modes correspond to roughly 90% of the
variance in the dataset. In a similar manner (Supplement), the top
three modes of variation in the thyroid dataset (preserving 90% of the
total variation) were the cell size, cell shape (elongated vertically vs.
elongated horizontally) and shifts in chromatin concentration (Fig. 3
in section 1.2 of Supplement) . The top six PCA directions preserv-
ing 90% of the variations in the U2OS dataset is also shown in Fig. 4
in section 1.2 of Supplement.

Peripheral migration of nuclear chromatin is predominantly re-
sponsible for FHB cancer in liver cells.We utilized the TBM
approach to discover the most discriminant, while visually inter-
pretable, differences between normal liver and fetal-type hepatoblas-
toma (FHB) specimens. While the PCA technique is useful for vi-
sualizing overall morphology trends in a given population of cells,

by itself, it contains no information regarding which morphology
changes are responsible for discriminating two sub populations. To
that end, we applied the pLDA-based method, described in detail in
the methods section. Figure 2, for example, contains no information
regarding which modes could be used for differentiating normal vs.
cancerous liver cells. Fig. 3 summarizes the visual information un-
covered by TBM when investigating FHB cancer in liver cells. We
note this result substantially differs from the result obtained by sim-
ply applying our earlier work on discriminant subspace selection [10]
to the LOT embedding described [3] in that it provides a description
of differences which are more statistically significant (see Supple-
ment section 1.5 for more details). The horizontal axis is plotted in
units of standard deviation of the chromatin spread along the most
statistically significant discriminant direction (in transport space [3])
between benign and FHB cells. In this visualization, each bar in
both histograms shown corresponds to the relative number of nuclei
that most closely resembled the nuclear structure shown right below.
The representative images corresponding to each histogram coordi-
nate are shown below the horizontal axis. The p-value of the his-
togram separation (computed using cross validation) is zero within
numerical precision, and therefore the separation of the normal and
cancer sub-populations is highly significant. In this case TBM dis-
covers that as the axis of chromatin discrimination slides from left
to right, typical nuclear chromatin migrates from peripheral bands in
the nucleus to being more and more concentrated at the center of the
nucleus. In other words, significant concentration of nuclear chro-
matin in the center of the nucleus, as opposed to its concentration
around the nuclear boundary, can suggest possible FHB condition in
the liver cells.

Patterns of circumferential bands in chromatin identifies progres-
sion of cancer from normal to FA through FTC in the thyroid.
Interesting insights regarding visual differences between the normal,
follicular adenoma of the thyroid (FA) and follicular carcinoma of the
thyroid (FTC) populations were discovered in Fig. 4 when the thyroid
dataset consisting of three sub-populations of normal, FA and FTC
cells were input to the TBM pipeline. Fig. 4 demonstrates the dif-
ference between the normal, FA and FTC sub-populations, computed
using the methods described below. The horizontal axis represents
the highest level of visual difference inside the subpopulations, i.e.
is directed along the most significant direction of difference between
normal, FA and FTC cells. The representative images are generated
between every unit of standard deviation from the mean image in
the dataset along the discriminant direction. Similar to the previous
experiment, the positions of alternate circumferential bands of chro-
matin concentration is revealed to be a possible biomarker for identi-
fying and distinguishing FA and FTC from the normal case. Whereas
one can detect the existence of peripheral and central chromatin con-
centrations in the benign case, the FTC case seems to have a more
uniform chromatin spread across the nucleus and the FA subpopu-
lations are distinguished by a single circumferential concentration
band approximately halfway between the periphery and the center.
In order to facilitate a clearer inspection of the pairwise differences
between the three classes (normal, FA and FTC), Fig. 6 in the Sup-
plement section 1.3 shows the pairwise histogram projections on the
most discriminant direction found in Fig. 4.

Gradual translocation of the Forkhead protein (FKHR-EGFP) in the
nucleus of transfected human osteosarcoma cells (U2OS) with
variation of dosage of Wortmannin is visually verified by TBM.
The third dataset containing Wortmannin injected assays of U2OS
cells to affect translocation of the Forkhead protein in the nucleus
serve as a verification tool for the statistical and representational ve-
racity of TBM. As shown in Fig. 5(A), the Forkhead protein (FKHR-
EGFP) gradually translocates from the cytoplasm towards the nu-
cleus of U2OS cells (left to right) with increasing dosage of the drug
Wortmannin [12]. Note that although there are four realizations of
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twelve assays in the dataset [12] with the first assay being the neg-
ative control (no Wortmannin) and the twelfth and last assay being
the positive control (maximum Wortmanni-n of 250 nM added), we
have only shown six equispaced assays in Fig. 5(A) from the first
realization [12].

TBM can be used to automatically recover the pattern of translo-
cation of FKHR-EGFP in the U2OS cells through a representational
axis signifying the most significant pattern of variation of FKHR-
EGFP in the cytoplasm. Fig. 5(B) bundles all the realizations of
the first six assays into a positive control and the last six assays into
a negative control, and the discrimination visualization step of the
TBM is applied to the two sub-populations to verify the FKHR-EGFP
translocation. It can be seen from Fig. 5(B) that the projections of the
positive control (0.00nM-7.81nM) in cyan is clearly separated from
the projections of the negative control (15.63nM-250nM) in red along
the most visually discriminant direction estimated by pLDA. More-
over, the horizontal axis (again plotted in units of standard deviation
of the FKHR-EGFP variation) has been tagged with synthesized im-
ages that statistically express the average FKHR-EGFP translocation
along the dosage increase. It can be observed from the synthesized
images in Fig. 5(B) that the FKHR-EGFP translocation has been ac-
curately captured.

In addition, the projections of all U2OS cells in twelve indi-
vidual assays along the discriminating direction in Fig. 5(B) are
shown in Fig. 5(C). All cells in a particular assay have been given
a unique color. It can be observed from Fig. 5(C) that the projec-
tion histograms of individual assays shifts from the negative con-
trol towards the positive control with increase in Wortmannin dosage,
with a rather abrupt change occurring between 7.8 and 15.6 nM. This
serves to verify that the negative to positive discrimination direction
in Fig. 5(B) estimated by TBM in fact gives reasonable progression
of the translocation.

Maximally correlated images with respect to Wortmannin dosage
shows quantifiable translocation of the FKHR-EGFP from the nu-
cleus towards the periphery of the average cell boundary. TBM
also provides considerable insight into the response of the U2OS
cells to Wortmannin dosage variation with respect to FKHR-EGFP
translocation. Using the TBM pipeline we computed the direction
in LOT space that is most correlated with dosage values (see meth-
ods). Fig. 6 demonstrates the dosage response curve. The hori-
zontal axis represents the logarithm of the Wortmannin dosage val-
ues (log(0.977nM)-log(250nM)), note that 0.00nM is not included
in this experiment. The vertical axis represents the normalized pro-
jected value of the data on the maximally correlated direction, de-
scribed above. These normalized projected values serve as a measure
of Wortmannin activity where zero corresponds to negative control
and one corresponds to positive control. The images corresponding
to 0% − 100% activity of the Wortmannin have been shown along
the vertical axis. The presented curve matches with the one reported
in the product specification of FKHR Redistribution Assay provided
by Thermo Fisher Scientific Inc in 2008.

Summary and Discussion
We have described TBM (see [17] for download) as a method for
decoding morphology differences in cell populations. The method
builds on previous work related to image processing using optimal
transport [3], as well as pLDA [10], by adding the capability to con-
struct a quantitative, discriminant, linear subspace of cell phenotypes
that can be directly visualized. We note the proposed LOT-based dis-
criminant subspace described by our TBM approach is substantially
different than our previous work in [10] in that it provides a more re-
liable description of statistically significant differences between two
cell populations (see Supplement section 1.5 for more details). In
addition, we also describe how to use the framework for visualizing
the morphological variations most correlated with a given indepen-

dent variable (e.g. drug dosage). This visual analysis of structural
differences can lead to improved understanding of inter-relationships
between cellular structure and functions. We believe TBM is the first
systematic approach of a totally automated visual exploratory tool in
cell image analysis that offers both the benefits of observation as well
as involved statistical tests on cell image databases containing one or
more phenotypes.

We applied TBM to discover statistically significant and visually
interpretable differences of nuclear chromatin configuration in nor-
mal vs. cancerous cells. The analysis shows that, on average, the
most discriminative information in these was how much chromatin
is present in the center vs. periphery of these. Malignant cancerous
cells were shown, on average, to have more chromatin concentrated
and packed at the center of the nuclear envelope, a finding consis-
tent with the biology of cancer cells [15]. We believe TBM could
be used in numerous pathology and cytology applications to recover
visually interpretable differences between normal, benign, and ma-
lignant cells.

We would like to note here that there are few methods for direct
application of statistical analysis tools, such as PCA and LDA, to the
image pixel intensities directly. For example, a direct and naive ap-
plication of the PCA to the pixel intensities following [16] can lead
to the discovery of biologically meaningless artifacts as evidenced in
section 1.4 in the Supplement. Pixel intensity variations inside real
images are highly non-linear and any linear interpolation of pixel in-
tensities in the image space leads to presence of aliasing artifacts in-
consistent with real images.

In addition, we have also used TBM to blindly recover known
information regarding nuclear to cytoplasm protein translocation in
a screening assay. In the U2OS dataset, TBM not only confirms the
translocation of FKHR-EGFP visually, establishing the veracity of
the functionality of TBM, but it also outputs a visual variant of the
dosage response curve of the drug Wortmanin that clarifies the repre-
sentative effect of the dosage increase on the average U2OS cell.

In conclusion, we anticipate important use of TBM in cell phe-
notype analysis in part due to the visual exploration component that
provides intuitive insight into the structural modes of cell construc-
tion. In addition, TBM is fully automated and relieves the end user of
manual and tedious definition as well as selection of arbitrary image
features, potentially leading to more accuracy and promises of gen-
erative modeling of cells. It can be applied to analyze segmented cell
images where the cell content (intensity or texture) can be viewed
as a distribution of ’free mass’. In this work we applied TBM to
two dimensional fluorescence and transmitted light microscopy im-
ages, but other microscopy imaging modalities (e.g. Coherent Anti-
Stokes Raman Scattering) could also benefit. The framework is also
amenable to three dimensional images (albeit at an increase in com-
putation cost). Finally, the TBM framework was presented here in
the context of scalar images. It can also be used to analyze the re-
lationship between multiple protein distributions, obtained through
multiple fluorescence labels or spectral imaging modalities, in cell
populations. This topic will be the subject of future work.

Materials and Methods
Datasets. In order to demonstrate the ability of TBM to discover vi-
sual information hitherto impossible with the standard feature based
approaches, we have identified three cell image datasets that include
cell texture variation either due to functional difference (cancer ver-
sus non-cancer) or drug infusion (drugs inhibiting protein transloca-
tion in cells). The first two datasets have been obtained from the
archives of the University of Pittsburgh Medical Center. The first
dataset contains microscopy images of liver tissue samples obtained
from ten different subjects including five cancer patients suffering
from fetal-type hepatoblastoma (FHB), with the remaining images
from the liver of five healthy individuals. The second dataset contains
microscopy images of resection specimens of thyroid from twenty
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different subjects. The first ten subjects provide images of normal
thyroid tissue, patients diagnosed with follicular adenoma of the thy-
roid (FA) provide the next five cases and the last five cases belong
to patients diagnosed with follicular carcinoma of the thyroid (FTC).
The acquisition of these datasets is described in detail in [11]. Briefly,
images were stained with the Feulgen technique to tag DNA content
and scanned at 0.074µm per pixel resolution.

The third image dataset demonstrates cytoplasm to nucleus
translocation of the Forkhead (FKHR-EGFP) fusion protein in sta-
bly transfected human osteosarcoma cells, U2OS [12]. In this assay,
the images are obtained from 48-well plates of cells incubated with
12 different dosages of Wortmannin. The images have a resolution of
0.6µm per pixel.

Image Segmentation.Prior to being analyzed with our TBM ap-
proach described below, each morphological exemplar (DNA per-
taining to one nucleus, or protein distribution from one cell) was first
segmented using standard approaches. The nuclear datasets were seg-
mented as described in [4]. The liver dataset were segmented to have
500 nuclei with an average of 50 nuclei per patient. The Thyroid
dataset consisted of 2053 cell images with an average of 102 images
per patient.

The U2OS cell dataset was segmented using Cellprofiler [5] with
the exact pipeline described in [5]. The DNA channel is used to lo-
cate the nuclei and consequently mark the seed points of a growth
step where every seed point grows into a closed curve that encircles
its respective cell boundary. On an average 730 images of individ-
ual cells were extracted from images of the wells incubated with the
same dosage of Wortmannin, leading to 8756 images of cells with 12
different classes (12 different dosages of Wortmannin). A detailed
discussion of the segmentation procedure is presented in [5].

Transport-based cell morphometry. The aim of our TBM approach
is to take as input segmented morphological exemplars and output
‘coordinates’ for each exemplar that can be used for both visualizing
the the main modes of variation of a dataset as well as the main ways
in which two or more groups of morphological exemplars differ from
one another. To that end, the images are normalized following a sim-
ilar approach as described in [14], the linear optimal transportation
embedding is calculated from the normalized images [3], and a mod-
ified version of the penalized Linear Discriminant Analysis (pLDA)
method [10] is utilized to capture the most statistically significant dis-
criminant direction. Finally, we used the well-known Kolmogorov-
Smirnoff test [13] for assessing significance when comparing distri-
butions over a chosen linear subspace.

Preprocessing

Each segmented structure is first normalized so that the sum of its
intensities equals one, so as to remove differences in staining pro-
cedures during imaging. This normalization limits us to investigat-
ing relative changes in overall mass distribution while all informa-
tion regarding absolute amounts is lost. In addition, due to com-
putational complexity considerations, each segmented structure is
also approximated with ‘point masses’ using the algorithm described
in [3]. Briefly, a weighted K-means clustering algorithm is utilized,
in conjunction with the available image intensities, so as to best ap-
proximate the input image. The number of point masses is chosen so
as to keep the computation time within a reasonable range (e.g. 30s
per image pair). Details of the algorithm used are available in [3].
When it comes to visualizing images from particle approximations
(processed as explained below), bilinear interpolation is used to dis-
tribute the masses onto the image grid, and a Gaussian function of
small variance is used to render a more realistic visualization of the
discrete particles. In the end, each morphological exemplar is repre-
sented by

∑N
j=1 pjδ ~yj where N is the number of masses being used,

~yj are the 2D Cartesian coordinates of the jth particle, while pj is its
mass here δ ~yj is an unit impulse function placed at the location ~yj).
In this study, we utilized N = 600 masses per structure. Following
this procedure each point mass approximation is translated so that its
center of mass is at the center of the field of view, and its main axis
of orientation, whose computation includes its mass distribution, is
aligned with the vertical axis. For cells whose mass distribution is
perfectly circular and uniform, such an axis is impossible to define,
as they are identical under all possible rotations.

Optimal Transport and Linear Embedding

The main idea in TBM is to quantify similarities between morpho-
logical structures in each dataset (all three datasets are processed in-
dependently) by measuring the amount of effort (quantified as mass
times distance that it must be transported) that would have to be spent
to re-arrange the particle approximation of one structure onto an-
other [11]. Here we use the linearized version of this metric con-
structed based on a tangent space approximation of the underlying
Riemannian manifold [3]. The idea is to first compute a reference
structure and then compute the optimal transport between each im-
age in the database and the reference structure. As in [3] we compute
an average structure by running the particle approximation algorithm
on the Euclidean average of the input digital images (computed af-
ter normalization for rotation, translation, and intensity, as described
above). Let σ =

∑Nσ
k=1 qkδ ~zk be the representation of the reference

structure for the given dataset Let µ =
∑Nµ
i=1 miδ ~xi be a sample

structure from the dataset. The optimal transport between µ and σ is
computed by

d2
OT (σ, µ) = min

f∈Π(σ,µ)

Nσ∑
k=1

Nµ∑
i=1

| ~zk − ~xi|2fki [1]

subject to fki ≥ 0,
∑Nµ
i=1 fki = qk,

∑Nσ
k=1 fki = mi. Here Π(σ, µ)

is the family of all transport plans from σ to µ, and f denotes the
optimal ‘transport plan’. Thus the transport plan is simply an assign-
ment function that states what proportion of the mass (intensity) of
the particle at ~zk has moved to the particle at ~xi [3]. Since these can
take fractional values between 0 and 1, splitting and joining of parti-
cles is possible. These are often rare as in most cases whole (either 0
or 1) assignments are made. Similarly, let g be the optimal transport
plan between structure σ and ν =

∑Nν
j=1 pjδ ~yj . A linear embedding

for structures µ and ν can then be computed by

x̄k =
1
√
qk

Nµ∑
i=1

fki ~xi and ȳk =
1
√
qk

Nν∑
j=1

gkj ~yj , k = 1, · · · , Nσ.

[2]
while the linear optimal transport between µ and ν is given by:

dLOT,σ(µ, ν) =

Nσ∑
k=1

|x̄k − ȳk|2. [3]

Thus, after pre-processing, the linear embedding for each morpho-
logical structure in a database of images is computed from equation
[2]. The approximate transport distance between any pair of images
in the database is computed from equation [3]. It can be noted the
resultant dimensionality of the linear embedding is 600× 2 = 1200.

Visualizing principal phenotypic variations

Given the LOT embedding computed from equation [2], we utilize
the standard principal component analysis (PCA) [6] technique for
data visualization. The covariance matrix for the LOT embedded im-
age set is ST = 1

M

∑
m(xm− x̄)(xm− x̄)T with x̄ = 1

M

∑M
m=1 xm,

where xm is the mth vectorized LOT embedded image. The principal
components are given by the eigenvectors of ST , and can be used
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to explain, and in this case, visualize the main modes of phenotypic
variation in a dataset. As customary we have retained the top k PCA
directions that preserve 90% of the variation of the original LOT em-
beddings. We have plotted the texture variation within cell popula-
tions by simply reconstructing intermediate LOT embeddings along
the PCA axes.

Detecting and visualizing phenotype differences.

The LOT embeddings can also be used for visualizing the discrim-
inating modes of cell texture variation between cell subpopulations.
To that end we apply the pLDA technique described in [10] to com-
pute the most discriminant components explaining the differences be-
tween two subsets (classes) of a given dataset. The penalized LDA
direction that denotes the direction along which the projections of the
C classes are maximally separated (in the LDA sense) is given by the
solution to the optimization problem

wpLDA = argmax
‖w‖=1

wTSTw
wT (SW + αI)w

[4]

where SW =
∑
c

∑
n∈c(xn − x̄c)(xn − x̄c)T represents the ’within

class scatter matrix’. The penalty weight α signifies a trade-off be-
tween the traditional LDA direction and the topmost PCA directions
of the same dataset (see [10] for a motivation). The precise methodol-
ogy for the determination of α for this work is based on fitting an ex-
ponential decay model to a metric that measures how far two conse-
quent subspaces are from one another (see Supplement section 1.5 for
details). As in the case of PCA, several mutually orthogonal pLDA
directions can be found from an augmented version of eqn. (6) which
give consecutive directions which show maximal residual discrimina-
tion between the populations. Consistent with existing literature, we
have retained the topmost pLDA direction that shows significant sta-
tistical difference (p ≤ 0.05 in a Kolmogorov-Smirnov test between
distributions) between the projected histograms of the cell subpopu-
lations along the direction. An important distinction here is that in
our method we choose to report only the statistically meaningful di-
rections computed using cross validation (using a portion of the data

held out from the training process). We make note that, as a whole,
the method described in this subsection yields a linear discriminant
subspace that significantly differs from the procedure described in
our earlier work [10]. Comparisons between the method described
here and our earlier method [10] are available in Supplement sec-
tion 1.5 and show the method can provide more reliable information
regarding difference between cell populations.

Computing morphology variations most correlated with an inde-
pendent variable

Define vector v = [v1, . . . , vM ]T such that vi is a scalar attribute of
the i’th image (i.e. dosage of Wortmannin). We are able to search in
the LOT space to find a direction, which is most correlated with v.
Hence, we are able to visualize the statistical effect of that specific at-
tribute in the dataset. The most correlated direction, wcorr , is found
as follows,

wcorr = argmin
w

wTXv√
wTw

=
Xv√

vTXTXv
[5]

whereX = [x1− x̄, . . . , xM− x̄] is a matrix, which contains the vec-
torized and mean subtracted, LOT images as its columns. The given
direction can then be visualized by plotting w = x̄ + λwcorr , with
λ a chosen length along the projection (in units of standard deviation
of the projected data along wcorr).

A Note on Numerical Implementation

All computations of TBM were performed in a highly parallel dis-
tributed computing cluster in the ECE department at Carnegie Mel-
lon, and average computation time for generation of results in each
dataset extended to a couple of hours. Computer code in the Matlab
language is available [17].

ACKNOWLEDGMENTS. The authors would like to acknowledge informative dis-
cussions with Drs. Wei Wang, John A. Ozolek, and Dejan Slepcev. The authors
acknowledge support from NIH grant GM090033.

1. Editorial. The quest for quantitative microscopy. Nature Methods, 9(7):627–627,
2012.

2. L. Yang, W. Chen, P. Meer, G. Salaru, L. A. Goodell, V. Berstis, and D. J. Foran
(2009) Virtual microscopy and grid-enabled decision support for large-scale analy-
sis of imaged pathology specimens. Information Technology in Biomedicine, IEEE
Transactions on, 13(4):636-644.

3. W. Wang, D. Slepcev, S. Basu, J. A. Ozolek, and G. K. Rohde (2013) A linear opti-
mal transportation framework for quantifying and visualizing variations in sets of
images. Int. J. Computer Vision, 101(2):254-269.

4. W. Wang, J. Ozolek, and G. K. Rohde (2010) Detection and classification of thyroid
follicular lesions based on nuclear structure from histopathology images. Cytom-
etry Part A, 77(5):485-494.

5. A. E. Carpenter, T. R. Jones, M. R. Lamprecht, C. Clarke, I. H. Kang, O. Friman,
D. A. Guertin, J. H. Chang, R. A. Lindquist, J. Moffat (2006) Cellprofiler: image anal-
ysis software for identifying and quantifying cell phenotypes. Genome biology,
7(10):R100, 2006.

6. T. W. Anderson (1963) Asymptotic theory for principal component analysis. Annals
of Mathematical Statistics, 34(1):122-148, 1963.

7. P. H. Bartels, T. Gahm, and D. Thompson (1997) Automated microscopy in diagnos-
tic histopathology: From image processing to automated reasoning. International
journal of imaging systems and technology, 8(2):214-223.

8. C. Demir and B. Yener (2005) Automated cancer diagnosis based on histopatho-
logical images: a systematic survey. Rensselaer Polytechnic Institute, Tech. Rep.
TR-05-09, Troy, NY.

9. K. Rodenacker, E. Bengtsson (2002) A feature set for cytometry on digitized micro-
scopic images. Analytical Cellular Pathology, 25(1):1–36.

10. W. Wang, Y. Mo, J. A. Ozolek, and G. K. Rohde (2011) Penalized fisher discriminant
analysis and its application to image-based morphometry. Pattern Recognition
Letters, 32(15):2128–2135.

11. W. Wang, J. A. Ozolek, D. Slepcev, A. B. Lee, C. Chen, and G. K. Rohde. An optimal
transportation approach for nuclear structure-based pathology. IEEE Trans. Med.
Imag., 30:621–631, 2011.

12. V. Ljosa, K. L. Sokolnicki, and A. E. Carpenter (2012) Annotated high-throughput
microscopy image sets for validation Nature methods, 9(7):637-637.

13. R. Boddy, G. Smith (2009) Non-Parametric Statistics, Statistical Methods in Prac-
tice: for Scientists and Technologists John Wiley & Sons, 129-138.

14. G. K. Rohde, A. J. S. Ribeiro, K. N. Dahl and R. F. Murphy (2008) Deformation-based
nuclear morphometry: Capturing nuclear shape variation in HeLa cells. Cytometry
A, 73(4): 341-350.

15. D. Zink, A.H. Fischer, J.A. Nickerson (2004) Nuclear structure in cancer cells. Nature
reviews cancer, 4(9):677-687.

16. M. A. Turk and A. P. Pentland (1991) Proc. IEEE Conference on Computer Vision
and Pattern Recognition, pp 586-591.

17. <http://www.andrew.cmu.edu/user/gustavor/software.html> To be made available
upon acceptance.

Footline Author PNAS Issue Date Volume Issue Number 5



Fig. 1. Schematic of the TBM pipeline. Microscopy images (on the left) are first segmented to obtain individual cells, the scale bars on the images denote 7µm

. Individual images are then normalized to eliminate translation and rotation. Finally, the embedding of the corresponding image is computed
in a linear space that is both discriminative and visualizeable.

Fig. 2. The top nineteen modes of variations obtained from applying PCA to the linear transport embedding of the liver dataset. The vertical axis represents units of
standard deviation of chromatin variation in a particular mode of variation. The first mode of variation demonstrates that the overall size of the nucleus is the dominant
variation in the data set. The second mode suggests that the second most abundant variation in the data set is elongation. The remaining variations correspond to the
protrusion of cells and shifts in the center of mass of chromatin distribution. The demonstrated variations explain roughly 90% of the variance in the dataset.

Fig. 3. The histograms of the projections of the coordinates of images of FHB and normal liver cells on the most discriminant direction. The representative images
correspond to histogram coordinate which is in units of standard deviation of the projection. The p-value of the histogram separation (in a two sample Kolmogorov-
Smirnov test [13] for statistical difference in distributions) is zero within numerical precision. It can be seen that the peripheral migration of nuclear chromatin is
predominately responsible for FHB cancer in liver cells.
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Fig. 4. The histograms of the projections of the coordinates of images of the normal, follicular adenoma of the thyroid (FA) and follicular carcinoma of the thyroid (FTC)
sub-populations in the thyroid dataset on the most discriminant direction. The representative images correspond to histogram coordinate which is in units of standard
deviation of the projection. The pairwise p-value of the histogram separation (in a two sample Kolmogorov-Smirnov test [13] for statistical difference in distributions) is
zero within numerical precision. It can be seen that the pattern of the radial bands of chromatin concentration in the nuclei constitute a discriminating factor.

Fig. 5. (A) 6 equispaced assays from the first realization with injected Wortmannin dosage equal to from left to right 0nM, 0.977nM, 3.91nM, 15.63nM, 62.5nM, and
250nM, the scale bars on the images correspond to 10µm.

(B) The projection of data on the most discriminant direction which separates the groups of assays with 0.00nM-7.81nM and
15.62nM-250nM dosage of injected Wortmannin which is shown in red and cyan, respectively. The presented images correspond to

histogram coordinate which is in units of standard deviation of the projection, and the red contour represents the mean size of the nuclei
throughout the data set. (C) the projection of the data on the most discriminant direction which separates the assays with different amount of
injected Wortmannin with corresponding images. Each histogram represents the projection of an assay with specific dosage of Wortmannin.
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Fig. 6. The Wortmannin concentration response curve in FKHR assay. The horizontal axis shows the logarithmic dosage of injected Wortmannin (log(0.977nM)-
log(250nM)). The maximally correlated direction with the dosage values is found and the vertical axes shows the normalized projection of the data on this direction.
The presented images correspond to the projected values and alternatively to the activity of the Wortmannin drug. The red curve is the Wortmannin concentration
response curve calculated from the data, while the blue curve shows a sigmoidal function fitted to the actual curve. Note that the presented images are contrast
stretched for visualization purposes.
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Datasets. Sample images showing cells from each of the phenotype
groups for liver and thyroid cells are depicted in Figures (7) and (8),
respectively. It can be seen that the phenotypic differences between
groups are highly complex and cannot be easily determined by visual
inspection.

Complete set of PCA images for the datasets. As noted before, the
last step of TBM is to apply linear statistical analysis techniques such
as the (1)PCA to compute the first k directions of texture variation in
the embedded image set that preserve at least 90% of the original
variance, and (2) pLDA to compute the most statistically significant
discriminant directions (p value ≤ 0.05 w.r.t. Kolmogorov-Smirnov
test). In the main body of the paper, we omitted showing all the
relevant PCA directions for ease of visualization and understanding.
However, for a complete understanding of the TBM pipeline and to
establish the uniformity of the TBM pipeline as such, we provide
the figures that visualize all the relevant PCA directions for all the
three datasets we have used in this paper. For the liver dataset, Fig.
9 shows all the relevant PCA directions whereas Fig. 10 shows all
relevant PCA directions for the U2OS dataset.

Complete set of LDA images for the datasets. As noted earlier in
the Results section, TBM can also be used to generate representative
images that span discriminative directions that are a combination of
one or more top pLDA directions to provide a deeper insight into the
total discrimination and their relative amounts present in the dataset.
To further clarify out point, after obtaining the linearly embedded im-
ages, we applied pLDA to the embedded image database to obtain the
two most discriminant directions between the three sub-populations.
This simply means that the directions are ordered by their relative
discrimination power, and as we move along any particular direction,
we can expect to see chromatin pattern changes that represent the
three sub-populations progressively.

Fig.11 (A) demonstrates the visual difference between the nor-
mal, FA and FTC sub-populations. The horizontal axis represents the
highest level and the vertical axis represents the second highest level
of visual difference respectively. The representative images are gen-
erated between every unit of standard deviation from the mean image
in the dataset along both directions. Any cell image in Fig. 11 (A)
represents a linear combination of the two discriminating modes and
signifies how the cell phenotype texture changes as we move between
the sub-populations. The highly negative axes values in Fig. 11 (A)
represent the normal case, and the images gradually move towards
the positive axes through the FA class and ultimately attains highly
positive values in both the axes for the FTC class. Fig. 11 (A) shows
that as one moves from the normal to FTC through the FA class, the
thyroid nuclei predominantly differed in their concentration of chro-
matin in peripheral bands and their shape. Greater departure from the
normal to the FTC through FA gradually shifted the chromatin in ra-
dial bands farther and farther away from the nuclear centre, whereas
the nuclear shape became thinner.

Fig. 11 (B) shows the corresponding representation of the image
data in Fig. 11 (A) as projections along the visually discriminant di-
rections. It can be seen from Fig. 11 (B) that the FA and FTC cases
overlap quite a lot and it is difficult to differentiate only through vi-
sual examination, as is confirmed by Dr. John A. Ozolek, assistant
professor of pathology at University of Pittsburgh.

Additionally, the pairwise discrimination between the projected
normal, FA and FTC histograms on the top discriminant direction in
the thyroid dataset is shown in Fig. 12.

An alternative pixel based analysis technique to TBM. A compar-
ison of TBM with a straightforward application of linear statistical
analysis tools to image pixel intensities is presented in this section.

For all images in the dataset having the same dimensions, centered
and aligned, the pixel intensities can be included in a giant one-
dimensional vector with each index of the vector representing a dis-
tinct pixel location. These giant vectors can be treated as feature vec-
tors representing the image itself. Although application of the PCA
and LDA to these feature vectors provides a visual exploration of the
variation within the dataset, yet, intrinsic nonlinearity of the pixel
distributions lead to discovery of information, which strays far from
any real biological phenomenon as evidenced in Fig. 13 and Fig. 14.

Discriminant directions. In this Section, we explain our method for
selecting the discriminant subspace and highlight the differences be-
tween the proposed method and the one introduced in Wang et al.
, IJCV 2013 [3]. We show that these methods lead to significantly
different lower dimensional discriminant subspaces. The proposed
method is different from that of Wang et al. in two major ways. First,
we use a different approach for finding parameter α compared to the
method used in Wang et al.. Second, in our approach we select those
discriminant directions that provide statistically significant discrimi-
nation in the dataset, while Wang et al. use the top pLDA directions.
Below we explain the mentioned differences, and the motivation be-
hind them in detail.

1. Identifying parameter α:
Both methods utilize the formulation of the pLDA discriminant
subspace,

wpLDA(α) = argmax
‖w‖=1

wTSTw
wT (SW + αI)w

, [6]

where the regularization parameter, α, in the pLDA objective
function provides a trade-off between PCA and LDA. For α = 0
the objective function of the penalized LDA is clearly equal to
the objective function of LDA. However, as α → ∞ the objec-
tive function of penalized LDA becomes equal to that of PCA.
Therefore one expects to see a gradual change in the penalized
LDA space with increasing α from zero to infinity. This fact is
the motivation for choosing α in both methods.
Wang et al. increase the value of α and measure the stability of
the first pLDA direction using the norm of the difference of the
two consequent discriminant directions. They pick α = αk if,

‖wpLDA(αk)− wpLDA(αk−1)‖2 ≤ ε, [7]

where ε is a predetermined small value that is set to ε = 0.005,
and α0 < α1 < · · · are the sequence of α’s.
In our approach, however, we increase the value of α and measure
the stability of the pLDA subspace (more than one direction) for
two consequent α values using the projection metric. The projec-
tion metric between two orthonormal matrices, X and Y, of size
D ×M is defined as,

dP (X,Y) = (

M∑
k=1

sin2(θk))
1
2 , [8]
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where 0 ≤ θ1 ≤ . . . ≤ θM ≤ π
2

are the principle angles between
to subspaces span(X) and span(Y), and are defined as

cos(θk) = maxuk∈span(X) maxvk∈span(Y) uTk vk

s.t. ‖uk‖2 = ‖vk‖2 = 1,

uTk ui = vTk vi = 0, {i = 1, . . . , k − 1} [9]

Given W(αk) = [w1
pLDA(αk),w2

pLDA(αk), ...,wNpLDA(αk)],
where wipLDA(αk) is the i’th discriminant direction calculated
with parameter αk, we calculate the projection metric between
W(αk) and W(αk−1). Figure 15 shows the projection metric of
two consequent subspaces as a function of α. At last, we fit an
exponential function to the calculated curve and set α = αk that
corresponds to the half life of the fitted function.
Finally, Figure 16 shows the projection of the data (Liver cells)
onto the first pLDA direction calculated from the α parameter
identified with the approach in Wang et al. [10] and our approach.
It can be clearly seen that our proposed method leads to a more
visible separation between the distributions.

2. Statistical significance ranking:
Another important feature of the method proposed in this paper
is to rank the pLDA directions based on their statistical signifi-
cance in the sense of Kolmogorov-Smirnov. While the general-
ized eigen-values in Equation 6 designate an ordering on the dis-
criminant directions, such that the direction corresponding to the
i’th largest eigenvalue is the i’th most discriminant direction in
the sense of Fisher score, LDA and consequently pLDA are best
suited for discrimination between Gaussian distributions. Hence,
if the data distribution does not follow a Gaussian-like distribu-
tion, the ordering provided by the eigenvalues is not reliable. This
is the motivation behind reranking the discriminant directions by
their statistical significance using a nonparametric statistical test
like Kolmogorov-Smirnov test. We employ a nonparametric test
to avoid any assumptions on the distribution of the data.
In order to show the importance of the statistical significance
ranking, we projected the data (Liver cells) onto the subspace cal-
culated from the method proposed by Wang et al. and our pro-
posed method. Figure 17 shows the projection of the data on the

2D subspaces. It can be clearly seen that the data is more sep-
arable in the discriminant subspace calculated by our proposed
method.
To show that the distribution of the data on the subspace pro-
vided by our method provides more discrimination compared to
that of Wang et al., we ran a multivariate two-sample test on
the projected data shown in Figure 17. We employed the mul-
tivariate nonparametric test proposed by Friedman and Steppel
(1974) [S1, S2]. The method counts the number of points among
the k nearest neighbors (kNN) of each point (say in class 1) that
belong to the same class (class 1). From these counts, separate
frequency distributions can be compiled for each class. Finally
a nonparametric univariate two-sample test is applied to the fre-
quency distributions of the two classes to calculate the statistical
significance of discrimination provided by the subspace. We ap-
plied the Kolmogorov-Smirnov test to the frequency distributions
(Normal and FHB cells) of the projected points into the subspaces
show in Figure 17. Figure 18 shows the frequency distributions
and their corresponding p-values for the discriminant subspace
obtained from the two methods. P-values for the statistical tests
are shown in the caption of the figures. It can be seen that our
proposed method leads to significantly lower p-value compared
to the method in Wang et al [10].
It is worthwhile to mention that the same procedure is applied to
other datasets, namely the thyroid dataset and the cytoplasm to nu-
clei translocation datasets. In all cases, our proposed discriminant
subspace provided significantly lower p-values (data not shown
for brevity). In the thyroid dataset the pairwise p-values between
the three nuclei populations, namely normal, FA, and FTC are
calculated. For the normal vs. FA challenge the p-value of the
projected data on our subspace is p = 0.0232 while it is equal to
p = 0.1349 for the method introduced in [10]. For the two other
challenges (i.e. normal vs. FTC and FA vs. FTC) the p-values are
zero to numerical precision for both methods. In the cytoplasm
to nuclei translocation dataset, similarly, the p-values between the
two populations, namely 0.00-7.81nM and 15.63-250nM, are cal-
culated to be zero to numerical precision for both methods.

S1. F. J, Friedman, S. Steppel, JW. Tuckey. A nonparametric procedure for comparing
multivariate point sets. Stanford Linear Accelerator Center Computation Research
Group Technical Memo, 153, 1973.

S2. M. F. Schilling Multivariate two-sample tests based on nearest neighbors. Journal
of the American Statistical Association, 81: 799-806, 1986.
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Fig. 7. Sample images of liver cells, showing normal (top) and FHB (bottom) phenotypes.

Fig. 8. Sample images of thyroid cells, showing normal (top), FA (middle), and FTC (bottom) phenotypes.
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Fig. 9. The top three modes of variations obtained from applying PCA to the linear transport embedding of the thyroid dataset. The horizontal axis represents units of
standard deviation of chromatin variation in a particular mode of variation. The first mode of variation demonstrates that the overall size of the nucleus is the dominant
variation in the data set. The second mode suggests that the second most abundant variation in the data set is elongation. The third variation corresponds to the shifts
in the center of mass of chromatin distribution. The demonstrated variations captures roughly 90% of the total variations in the dataset.

Fig. 10. The top six modes of variations obtained from applying PCA to the linear transport embedding of the U2OS dataset. The horizontal axis represents units of
standard deviation of chromatin variation in a particular mode of variation. The first mode of variation demonstrates that the overall size of the nucleus is the dominant
variation in the data set. The demonstrated variations explain roughly 90% of the variance in the dataset.
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Fig. 11. (A) Demonstration of the visual difference between the normal, FA and FTC sub-populations. The horizontal and vertical axes represent the first and second
most discriminant directions, respectively. The axes are in units of standard deviation of the projection on the corresponding discriminant direction. (B) Corresponding
representation of the image data in (A). It can be seen that the FA and FTC cases overlap quite a lot and the visual discrimination of these cases based on chromatin
distribution is difficult.

Fig. 12. A pairwise discrimination between the histograms in the three classes in the thyroid datasets. The discriminant direction is the top discriminant direction as
presented in Fig. 4

Footline Author PNAS Issue Date Volume Issue Number 13



Fig. 13. The top nineteen modes of variations obtained from directly applying PCA to images in the liver dataset. The vertical represents units of standard deviation
of chromatin variation in a particular mode of variation. The demonstrated variations explain roughly 90% of the variance in the dataset. As seen from the figure, the
variation of size and shape is completely missed here, with only bands of aliasing artifacts explaining the variation.

Fig. 14. The top three modes of variations obtained from directly applying PCA to the images in the thyroid dataset. The vertical represents units of standard deviation
of chromatin variation in a particular mode of variation. The demonstrated variations explain roughly 90% of the variance in the dataset. Again, the band-like artifacts
are completely meaningless with respect to capturing any real biological phenomena.
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Fig. 15. The projection metric of the consequent subspaces as a function of α. Note that the blue curve is the projection metric which shows that increasing α will
lead to stabilizing the penalized LDA subspace. The red line shows the α corresponding to the half life of the blue curve.

Fig. 16. The projection of the data onto the pLDA direction calculated from (a) the method proposed by Wang et al. (b) our proposed method.
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Fig. 17. The projection of the Liver data onto the pLDA subspace calculated from (a) the method proposed by Wang et al. (b) our proposed method. Red corresponds
to FHB and blue corresponds to normal.

Fig. 18. The frequency distributions calculated from the projected data (Liver) onto pLDA subspace calculated from (a) the method proposed by Wang et al. (b) our
proposed method. Red corresponds to FHB and blue corresponds to normal.
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